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Introduction 
According to [1] reliability means "the 

property of the product to perform certain 
functions a given time corresponding to a 
particular regime and certain operational 
conditions, technical maintenance, repair, 
storage and transport”, and its operational 
status is "the state of product in which it is 
capable of performing all tasks, the func-
tional parameters of the product, called basic 
parameters, remaining within the confines of 
the technical documentation". 
According to the same references, the event 
consisting of loss of the functional capability 
is called failure, and the exit of the basic pa-
rameters from limits means failure criterion. 
We can see, therefore, the similarity between 
the general concept of reliability and the reli-
ability of software; we also remark that the 
software is different from other products be-
cause it’s criterion of failure is identified in 
violation by the program of the specifica-
tions. 
This article aims to adapt the general theory 
of technical diagnosis, in the manner done by 
[2], encompassing experience in the field of 
scientific research and education in the Mili-
tary Technical Academy, where addressing 
technical diagnosis was made in an engineer-
ing style which eventually lead to develop-
ment of effective design methodologies. Ap-
plying this methodology is subject only to 
specific information about the structure and 
reliability of software program and the set of 
tests available for the diagnosis of this pro-
gram. 
We also note that the calculations required 
for technical diagnosis were included as spe-

cific programs in FIAB; this product was de-
signed and made in the Military Technical 
Academy in scientific research and educa-
tional purposes [2]. 
A software process can be divided (split) on 
modules, which in turn can be composed of 
functions, making them subject to software 
functional testing against functional specifi-
cations that have been formulated with a se-
lected operational profile. 
Functional testing of software can be based 
on general principles of technical diagnosis, 
because is based on information relating to 
product structure and appropriate test proce-
dures. 
Therefore the results of the general theory of 
technical diagnosis can be reinterpreted, in 
the usual sense of functional testing of the 
software. 
The benefits of this approach are: 
 Provide a basis for the testing of the 

properties of detection and locating asso-
ciated with a set of tests and minimize its; 

 Give methodological principles for the  
tests organization into effective testing 
program; 

 Provide a new basis for the calculating of 
the matrices of complexity and reliability 
of software. 

Technical diagnosis provides an overall 
methods, processes and techniques aimed at 
highlighting the errors occurring in the op-
eration of hardware. 
Two technical problems are derived from this 
general objective of the technical diagnosis: 
fault detection and locating of errors detected 
occurred. 
Software failure may occur as a result of the 
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existence of human error in one or more 
modules, having to do so with single fault or 
multiple faults (which is the general rule). 
The detection of the error that caused the 
fault is the process of the obtaining of the in-
formation about a program failure. 
This process is naturally followed by the lo-
cation of detected errors- this is a process of 
identifying the module (and function) of the 
program that is fault. 

 
2 Errors Detection 
Definition 1. Detecting errors in a program 
is the process by which information is ob-
tained about the existence or absence of er-
rors in the program. We note by X a finite 
set, with Card X = L = 2N, where N is the 

number of modules of the program, set of 
possible states of the diagnosed program. It 
follows therefore: 
 
X = { xi  ;  i= 0,…,L }.         (1) 
 
Definition 2. A Xi program state is a syn-
thetic information about the state of the pro-
gram modules. 
About program modules we admit that they 
can be only one of two states: operational 
status or condition in which they are sus-
pected to be broken. 
A state xi can then be represented as a vector: 

)...  ( 321 iNiiii xxxxx  , 

 






not if ,0

errors have  tosuspected isk  module  theif,1
ikx         (2) 

 
It follows therefore that  x0=(0,0,0,...,0) is the 
state in which all modules are running, 
xi=(0,0,0,...,0,1,0,...,0), i=1,...,N   are states 
where the module i is suspected to have er-
rors , and )1,...,1,1,1(Lx  is the state where 

all modules are suspected to have errors. 
For a state ix  from set X we note I( ix ) the 

set of the modules suspected to have errors in 
that state; hereby we have the formula: 

}1},...,1,0{{)(  iki xNkxI .           (3) 

The number of modules suspected of errors 
in the state xi will be )( ixn , where: 

n(xi)= Card I.(xi)  (4) 
We say that two states ix  şi jx  are equivalent 

( ix ~ jx  ) if: 

)()( ji xnxn  .  (5) 

We obtain a partitioning of the set X in 
equivalence classes Xk: 


N

k
kXX

0

 ,   (6) 

where: 
}.)({ kxnxX iik    (7) 

To solve the problem of detecting and locat-
ing errors in a program we run a series of dif-
ferent tests. 

 
Definition 3. A test is an experimental proc-
ess by which an error is detected in a subset 
of program modules. 
In the context of functional testing, a test is 
identified by testing the correspondence with 
the specifications for a specific subprogram 
of the tested program. 
We note by V the set of tests (checks) avail-
able for diagnosis: 

},,...,1{ MjvV j      (8) 

where M is the number of available tests; M 
is finite. 
The essential  information for a test are the 
modules tested. We represent a test as a vec-
tor 

),,...,,,( 321 jNjjjj vvvvv      (9) 

 
where: 






not. if 0,

;by test   testedisk  module  theif ,1 j
jk

v
v (10) 

The set of tested modules we note )( jvJ and 

we have: 
}.1},...,2,1{{)(  jkj vNkvJ   (11) 

In choosing a set of tests it must be ensured 
that for any program module it should exist a 
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test for that module. 
Proposition 1. Necessary and sufficient con-
dition for a set of tests V to ensure detection 
of any error is that for any program module 
to be at least one test to test that module. 
The following sentence is equivalent with the 
sentence 1. 
Proposition 2. For any  k=1,...,N it exists a 
test Vv j   so  .1jkv  

Definition 4. The matrix   ),( jkvV    

j=1,…,M  ,  k=1,…,N  is called test matrix. 
The introducing of the concept of a matrix of 
tests is advantageous, in terms of calculus, 
for studying the properties of the diagnostic 
process. 
In these circumstances, propositions 1 and 2 
are equivalent to the following sentence: 
Proposition 3. Necessary and sufficient con-
dition for a set of tests V to ensure detection 
of any error is the test matrix V has no null 
columns. 
If a set of tests V ensures detection of any er-
ror, we can find then a included matrix of the 
tests matrix V so the propositions 1 and 3 are 
met with a minimum number of tests. 
The included matrix of V is noted V* and is 
called reduced matrix. 
Further it is recognized that it operates only 
in the form of reduced matrix V. 
 
3 Locating Errors 
In terms of evolutionary time, the state pro-
gram can be characterized as a random vari-
able t , tT with values in the set of states X. 

If the diagnostic problems are solved in suc-
cession, we can use as time set the set of 
natural numbers (T=N). It follows that (t), t 
T, is a random process that can be treated 
as a Markov process with finite set of states. 
Definition 5. The locating of the errors is the 
experimental process that identifies fault 
software modules. 
Locating process can be executed simultane-
ously with or after error detection procedure 
if there faulting modules exist in program. 
In this case we can write: 

 t  .\ 0XX  
If there are only single errors and tracking 
activities are executed sequentially in time, 

then usually   0 LX (leaving the original 

state in which all program modules are sus-
pected to have errors) and it aims to reach in 
 t  1X   state, which means locating faulty 

module. 
The software has, usually, several modules 
with errors and more errors for each module. 
The hardware is operating in practice with 
individual breakdowns, even when there are 
multiple faults, because in this case there are 
not theoretical results, implemented, similar 
to those of single faults.  
Therefore, to eliminate multiple faults suc-
cessively apply the methodology of single 
faults until the detecting no signals the pres-
ence of faults [3]. 
By analogy to locate multiple errors in the 
software we will proceed in the same manner 
developing the theory of individual errors 
and implementing, repeatedly, the procedures 
established for locating, until all errors are 
eliminated. 
This procedure can be justified practically by 
the fact that the multiple errors (faults) are 
not manifested simultaneous necessarily so 
for every run of a program they can show as 
individual errors 
Working assumptions will be described be-
low. 
Assumption 1. We consider only single er-
rors. 
Testing process starts from initial state  0

LX  and continues until  t   )(\ 10 XXX , 

when we locate the module containing errors. 
Each state Xxi  has a set of suspected 

modules I(xi). For each test Vvi  we have a 

set of tested modules )( jvJ . After the test 

Vvi   the set of suspected modules is: 

a)  )()( ji vJxI  if the error exists; 

b) )(\)( ji vJxI  if the error not exists. 

Assumption 2. The tests Vv j  certainly 

give the modules containing errors.  
For a test vj to ensure the restriction of suspi-
cious modules it must include at least a sus-
picious modules and no simultaneously all 
suspicious modules. In other words, a test vj 
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 V must meet the following condition: 

).()()( iji xIvJxI  
 

We note with )(*
ixV the set of tests vj  V 

that have the property stated above and 
which defines clearly the relationship: 

 

}.)()()({)( ijiji xIvJxIVvxV     (12) 

 
Definition 6. The set )(*

ixV is called the set 

of the useful tests in the state xi. 
Its importance is apparent from the following 
sentence: 
Proposition 4. A set of tests V provides the 
location of any errors if 

 )( ixV , ).(\)( 10 XXXxi   

In other words a set of tests provides the lo-
cation of any errors if tests are useful when-
ever there is more than one suspect module. 
The following sentence is equivalent to 
proposition 4. 
Proposition 5. A set of tests V provides the 
location of any errors if   

.)(,)( 2XxxV ii   

In other words, a set of tests provides the lo-
cation of any errors if any pair of suspicious 
modules can be detected. 
This property is stated in [2] : A set of tests 
provides the location of any fault detected if 
two faults are two distinctive. 
The following sentence expresses the matrix 
form of the sentence 5. 
Proposition 6. Necessary and sufficient con-
dition for a set of tests V to ensure the loca-
tion of any detected errors is that the test ma-
trix V has no identical columns. 

From matrix V we can choose a included ma-
trix V* ensuring proposition 6 with a mini-
mum number of lines. In this way we can en-
sure the location of any errors detected by a 
minimum number of checks. 
The included matrix V* with this property is 
called also reduced matrix, and further we 
assume that the reduced form of V is used. 
 
4 Automatic Signalling of the States 
In terms of organization of the testing proc-
ess for errors detected in the program we can 
distinguish two different cases: 
a. The tests run simultaneously. In this 
situation we can signal the states of program 
that may indicate at any time if the program 
is without error or an error is detected in the 
program. 
b. Tests are executed sequentially (succes-
sively). In this situation the locating process 
can be executed sequentially to locate the er-
ror detected. Automatic signalling of the 
states is possible where the program is con-
tinually monitored by simultaneous tests in 
order to indicate any time if no errors and if 
so, what is the perfect module. Its implemen-
tation is done when the assumptions 1 and 2 
are satisfied: 

 
 
 
 
 

Fig. 1. Scheme of automate signalling of the states of a program (hardware variant) 
 
In this case, a test of V is equivalent to meas-
uring a functional parameter j of the system 
and comparing it with a certified field 

j
0 , 

j=1,...,M. To use a such information the test-
ing scheme should be structured as fig.1, 
where  = (

1
,

2
,...,

M
) is the vector for the 

compared parameters and  * =(
1

* ,
2

* ,...,
M

*

) is the vector with the results of this com-
parison, where: : 
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 j
* =








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j

j
o

0
j

j

 if ,0

 if ,1




   ...... (13) 

and the calculus scheme realises the corre-
spondence between  *  and  signals;  has 

the structure: =( 0 , 1 , 2 ,..., N ), 

where: 

 

 0 =




 ),...,1, stateany in  is  program  theif ,0

) statein  (is errors no has program  theif ,1 0

Nix

x

i

   (14) 

and 

 i =




faultnot  is i module  the,0

fault is i module  theif ,1
     (15) 

for i=1,...,N. 
 

Table 1. The logical function of the calculus scheme 
Parameters  *   
States  1

*  ...   1    N

 

0  0 ...  0   
Unit matrix 1    

Transposed matrix V ... 
N 

  
The hardware implementation of the scheme 
of calculation is done using a combinational 
circuit whose function is to distinguish the 
fault module(s). 
Given that the matrix V provides the detec-
tion and locating of any errors, the trans-
posed matrix V will not have the identical 
null or identical lines.  
Logic equations for 0, 1,…, N  values are 
obtained from  Karnaugh diagrams  and their 
minimize (Table 1). 
FIAB product contains a section on auto-
matic signalling of the status [2], providing at 
output the both reduced matrix V' and table 1 
for a tests matrix V.  
Figure 2 proposes a software implementation 
of the scheme for automatic signalling of the 
program states (fig.1), where the following 
notations are used: 

- NL = number of rows of matrix V , ; 
- NC = number of columns of matrix V , ; 
- Y * = the vector that keeps, in ascending 

order, the number of lines remaining in  
reduced matrix V 'of the original matrix 
V; 

- V’t= transposed matrix of the matrix V’. 
 

5 Locating Errors in Successive Tests 
The notion most representative for this case 
is the concept of locating program. 
Definition 7. Locating program is a se-
quence of tests applied to a program in order 
to locate the error detected. 
There are two basic classes of software locat-
ing  
 fixed programs, when the tests succeed 

in a fixed sequence until the error de-
tected is located; 

 adaptive programs, when the next test is 
determinate by the results of the previous 
tests. 

Effectiveness of a program that locates the 
error detected can be characterized by many 
indicators, from which: 
 the average number of steps to locate 

error; 
 the average  time for location; 
 the average cost of locating process ; 
 the average amount of information 

brought by the tests. 

M
*

0
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In what it follows we will present the main 
concepts related to adaptive locating pro-
grams that use as a criterion of efficiency the 
average amount of information brought by 
the tests, the key advantage that provides the 
most convenient implementation  
Whatever is the criterion of efficiency 
achieved by the locating program, it is neces-
sary to determine a priori probability of fail-
ure of software modules. 
If we note with pi a priori probability of fail-
ure of the module i from system, with Di the 

event “module i is fault”, and with D the 
event “the program is fault, then we have the 
relations: 


N

i
iDD

1

  (16) 

and ),/( DDPp ii   (17) 

resulting 
).(/)( DPDPp ii   (18) 

Probabilities pi can be determined either ex-
perimentally or analytical. 

 

 

Fig. 2. Scheme of automate signalling of the states of a program (software variant) 
 
a) Experimentally determining of the pi values  
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After we analyze N cases when the program 
was fault, we determine the number of cases 
Mi when the module i was fault. We can say, 
under the law of large numbers, that iM /N 

converges in probability to  ip  and therefore 

we can approximate  ip  even with this frac-

tion 

ip NM i / .                (19) 

Obviously the following properties are satis-
fied (assuming single fault):  
1) ip ;,...,1,0 Ni      (20) 

2)


N

i
ip

1

=1.                  (21) 

b) Analytical determining of the pi values  
Assuming that the failure of the program 
modules follows a exponential distribution 
law of life time, i.e. it complies with the 
model Jelinski-Moranda (it supposes that are 
N1 errors in program at the beginning, each 
independent of each other and equally likely 
to cause a failure during testing; the number 
N1 of error is estimated by maximum likeli-
hood method; the errors are not removed un-
til a fatal error appears, when the accumu-
lated errors group is extirpated and no new 
ones are introduced during debugging), we 
have: 

t
i

ieDP 1)(  ti  (22) 

if the condition t<<1 is realized , and for the 
entire program: 

,1)( teDP t     (23) 
where 

i

 is the intensity of failure of the 

module i, and  is the intensity of failure of 
the program: 





N

i
i

1

  (24) 

For the mission duration t, so that it<<1 and 
t<<1, we can approximate by virtue of rela-
tions (22) and (23) a priori probability with 
the relationship: 

 /iip   (25) 

Values pi thus obtained also satisfy condi-
tions 1) and 2) of case a). 
Failure intensities calculation of the modules 
will be made to the formula proposed in [3]:  

kkk IMer /**    (26) 

where:  
Me=4,2*10 7  is the Musa exposure rate of 
faults; 
r = r processor speed, in instructions / s - can 
be determined from benchmarking programs 
or technical characteristics of the computer 
offered for sale; 
k = number of faults contained by module 
k. He is determined transforming source in-
structions written in a programming language 
into functional points and then determining 
the number of faults as CMM Level (Capa-
bility Maturity Model) selected [4]; 
Ik = number of lines of executable code k * 
expansion rate[4]. 
Random nature of a locating program is 
given by the results of the tests. 
Definition 8. The result of a test is a infor-
mation that confirms/not confirms the sus-
ceptibility about the tested modules. 
The result of the testing we note rij(k) and it 
represents the result of test j in the state xi , 
when the module k is fault. Therefore it is a 
binary random variable, defined by: 

 












)lity susceptibi  theconfirmesnot (it  )(\)( if ,0

)lity susceptibi  theconfirmes(it  )()( if ,1
)(

ji

ji

ij
vJxIk

vJxIk
kr



  

(27) 

 
So ijr (k) is a discreet random variable having 

the next repartition table:  

 (28) 

where: 
 (29) 

  (30) 

which we’ll have the relations: 
 

,     (31) 

0 1
(.) : ,ij

ij ij

r
Q P

 
 
 
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( )

i j

i

k
k I x J v
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k
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p

P
p
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
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.     (32) 

 
We’ll have, obviously: 

.                (33) 

We’ll note  the information obtained from 

state, when the susceptibility is confirmed 

(respectively ) and with the informa-

tion obtained from state , when the suscep-

tibility is not confirmed (respective rij = 0). 
We note H( ) the entropy of the state , 

and H( ), respectively H( ), the entropy 

of the state  after the test j, with confir-

mation/not confirmation of the susceptibility. 
We note  the fault probability of mod-

ule k, when it belongs to the set I( ) and 

we’ll have: 
 

    (34) 

In these situations we will have the entropies: 
 

     (35) 

 
    (36) 

 
   (37) 

We’ll note  the entropy after testing.  is 

a discreet random variable with the next re-
partition table: 

.       (38) 

The average entropy after testing will be the 
average value of , noted with : 

.    (39) 

The average information brought by test  

in the state , noted with I( / ), will be: 

I( / )=H( )- .      (40) 

To determine these values we’ll first rewrite 
the values for  and  which, ac-

cording to (33), are: 
 

 (41) 

respectively 
 

, (42) 

where: 
 

           (43) 

             (44) 

 
and we used relations (32) and (34). 
We’ll calculate H( ) and H( ):

 

 

(45) 

 

 
We’ll also have: 

( )\ ( )

( )
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k
k I x J v
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k

k I x
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




1ij ijQ P 
1
ix

ix
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ix
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ix 0

ix

ix

ijH

ix ix
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  (46) 

 

Replacing in (38) the values above obtained, 
we’ll have: 

      (47) 

resulting: 

    (48) 

That is to say, in natural language, that [2]: 
Theorem 1. The average information 
brought by a test is equal with the entropy of 
the testing result. 
Immediate conclusion is that at each step of 
testing it should be chosen that test which 
maximizes the average amount of informa-
tion given by (47). 
Maximum value I ( j/xi) is obtained for that 
test which has the value of Pij the closest of 
0.5. Choosing the test in the step i will be 
subject to the results obtained in previous 
steps. 
The locating program of the detected error in 
software can be represented by a tree graph 
=(V,R) whose nodes are the running tests 
and arcs represent the results. 
Origin of the graph is the test running first 
time, and each peak of the graph represents 
the fault module of the program. 
For a locating program, as mentioned above, 
the tests may be succeed in a fixed sequence 
or in an order determined by the test result at 
each step. 
Figure 3 shows the principle of construction 
of the graph for the locating of the error de-
tected when the locating process is optimized 
by the criterion of average quantity of infor-
mation brought by tests. 
The locating algorithm is given below: 
Step 1. For each test , from the set of help-

ful tests V*( ), is calculated the  value 

then the calculated values will be included in 
the last column of the table. 
Step 2. Determine the index value j * for 

which the value Pij of the last column is the 
closest to 0.5 and run the test j* ; after the 
test execution two situations occur: or not 
confirm susceptibility (r = 0 or r = 1) . 
Step 3. If, after the testing, the fault module 
is among suspected modules  (confirmation) 
we’ll build a new table that will contain on 
rows the checks that belong to V*( ) and 

the original columns will keep only the col-
umns that belong to I( ) (the modules 

which were suspected to be fault were tested 
and suspicion was confirmed).  
Step 4. If, after the testing, the fault module 
is not among suspected modules  (not con-
firmation) we’ll build a new table that will 
contain on rows the checks that belong to 
V*(xi

0) and the original columns will keep 
only the columns that belong to I(xi

0) (the 
modules which were suspected to be fault 
were tested and suspicion was not con-
firmed). 
Continue actions from step 1 to 4 until the 
fault module is localized. Presented algo-
rithm is implemented in FIAB utility [2]. 
The locating time of an error detected in a 
program is a discrete random variable which 
we note, as [1], with , having the follow-

ing distribution table: 

,     (49) 

where   is the locating time of a error ex-

isting in module i. This value can be calcu-
lated using the locating graph for detected er-
ror. In this case, in the graph   is a single 
subgraf i that starts from root to i repre-
senting the sequence of tests until the loca-
tion of the error detected i. We make the fol-
lowing notations: 

  (50) 

( / ) log log .j i ij ij ij ijI v x P P Q Q    

1
ix

1
ix

restT

1 2

1 2

: N
rest

N

T
p p p

   
 
 





i




{ / }i j iJ j v 
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V*( ) ix

    i 
j 

1  ijP

1 

J* 

I( ) ix

. . . . . . . 

r =0 

 0( )iI x

r =1 

 1( )iI x

So  is the set of indices of the tests in-

cluded on the branch . If   is the time of 

test j, we will have: 
 

  (51) 

In these circumstances, the distribution of the 
locating time is completely determinate. 
We note, according to the standard [1], with 
Trest.med the average time for the locating 
of the error detected, respectively Trest.med = 
M[Trest]. 
Then: 

  (52) 

and respectively 

 (53) 

 
Observation 1. If in the formula (51) Tj is 
replaced with 1, the value Trest.med thus ob-
tained will represent the average number of 
steps required for the locating of the error 
detected.
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Fig. 3. Building of the graph for the locating of the detected error optimized by the criterion 
of average quantity of information brought by tests 

 
6 Conclusions 
The locating program built contains all 
methodological information needed to exe-
cute the locating process. It must then com-
plete with details of the tests contained in it: 
what parameters are tested, and which are 
normal specifications (i.e. specifying the cri-
terion of failure). 
We emphasize once again the generality of 

this methodology, the application of which is 
subject only to the existence of specific in-
formation on program structure, the a priori 
probability of failure of modules and to the 
set of tests available for the diagnosis of the 
program 
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