
Informatica Economică vol. 14, no. 4/2010 57

Integration of the Functional Testing with the General Theory of the
Technical Diagnosis

Mihai POPESCU

Titu Maiorescu University, Bucharest, Romania
mihai_popes2000@yahoo.com

The paper goal is to integrate the software reliability into the general theory of the reliability,
this thing being a natural approach, perfectly justified by the core concepts governing the two
areas.
Keywords: Reliability, Faults, Errors, Functional Testing, Technical Diagnosis, Entropy

Introduction
According to [1] reliability means "the

property of the product to perform certain
functions a given time corresponding to a
particular regime and certain operational
conditions, technical maintenance, repair,
storage and transport”, and its operational
status is "the state of product in which it is
capable of performing all tasks, the func-
tional parameters of the product, called basic
parameters, remaining within the confines of
the technical documentation".
According to the same references, the event
consisting of loss of the functional capability
is called failure, and the exit of the basic pa-
rameters from limits means failure criterion.
We can see, therefore, the similarity between
the general concept of reliability and the reli-
ability of software; we also remark that the
software is different from other products be-
cause it’s criterion of failure is identified in
violation by the program of the specifica-
tions.
This article aims to adapt the general theory
of technical diagnosis, in the manner done by
[2], encompassing experience in the field of
scientific research and education in the Mili-
tary Technical Academy, where addressing
technical diagnosis was made in an engineer-
ing style which eventually lead to develop-
ment of effective design methodologies. Ap-
plying this methodology is subject only to
specific information about the structure and
reliability of software program and the set of
tests available for the diagnosis of this pro-
gram.
We also note that the calculations required
for technical diagnosis were included as spe-

cific programs in FIAB; this product was de-
signed and made in the Military Technical
Academy in scientific research and educa-
tional purposes [2].
A software process can be divided (split) on
modules, which in turn can be composed of
functions, making them subject to software
functional testing against functional specifi-
cations that have been formulated with a se-
lected operational profile.
Functional testing of software can be based
on general principles of technical diagnosis,
because is based on information relating to
product structure and appropriate test proce-
dures.
Therefore the results of the general theory of
technical diagnosis can be reinterpreted, in
the usual sense of functional testing of the
software.
The benefits of this approach are:
 Provide a basis for the testing of the

properties of detection and locating asso-
ciated with a set of tests and minimize its;

 Give methodological principles for the
tests organization into effective testing
program;

 Provide a new basis for the calculating of
the matrices of complexity and reliability
of software.

Technical diagnosis provides an overall
methods, processes and techniques aimed at
highlighting the errors occurring in the op-
eration of hardware.
Two technical problems are derived from this
general objective of the technical diagnosis:
fault detection and locating of errors detected
occurred.
Software failure may occur as a result of the

1

58 Informatica Economică vol. 14, no. 4/2010

existence of human error in one or more
modules, having to do so with single fault or
multiple faults (which is the general rule).
The detection of the error that caused the
fault is the process of the obtaining of the in-
formation about a program failure.
This process is naturally followed by the lo-
cation of detected errors- this is a process of
identifying the module (and function) of the
program that is fault.

2 Errors Detection
Definition 1. Detecting errors in a program
is the process by which information is ob-
tained about the existence or absence of er-
rors in the program. We note by X a finite
set, with Card X = L = 2N, where N is the

number of modules of the program, set of
possible states of the diagnosed program. It
follows therefore:

X = { xi ; i= 0,…,L }. (1)

Definition 2. A Xi program state is a syn-
thetic information about the state of the pro-
gram modules.
About program modules we admit that they
can be only one of two states: operational
status or condition in which they are sus-
pected to be broken.
A state xi can then be represented as a vector:

)... (321 iNiiii xxxxx  ,






not if ,0

errors have tosuspected isk module theif,1
ikx (2)

It follows therefore that x0=(0,0,0,...,0) is the
state in which all modules are running,
xi=(0,0,0,...,0,1,0,...,0), i=1,...,N are states
where the module i is suspected to have er-
rors , and)1,...,1,1,1(Lx is the state where

all modules are suspected to have errors.
For a state ix from set X we note I(ix) the

set of the modules suspected to have errors in
that state; hereby we have the formula:

}1},...,1,0{{)( iki xNkxI . (3)

The number of modules suspected of errors
in the state xi will be)(ixn , where:

n(xi)= Card I.(xi) (4)
We say that two states ix şi jx are equivalent

(ix ~ jx) if:

)()(ji xnxn  . (5)

We obtain a partitioning of the set X in
equivalence classes Xk:


N

k
kXX

0

 , (6)

where:
}.)({ kxnxX iik  (7)

To solve the problem of detecting and locat-
ing errors in a program we run a series of dif-
ferent tests.

Definition 3. A test is an experimental proc-
ess by which an error is detected in a subset
of program modules.
In the context of functional testing, a test is
identified by testing the correspondence with
the specifications for a specific subprogram
of the tested program.
We note by V the set of tests (checks) avail-
able for diagnosis:

},,...,1{ MjvV j  (8)

where M is the number of available tests; M
is finite.
The essential information for a test are the
modules tested. We represent a test as a vec-
tor

),,...,,,(321 jNjjjj vvvvv  (9)

where:






not. if 0,

;by test testedisk module theif ,1 j
jk

v
v (10)

The set of tested modules we note)(jvJ and

we have:
}.1},...,2,1{{)( jkj vNkvJ (11)

In choosing a set of tests it must be ensured
that for any program module it should exist a

Informatica Economică vol. 14, no. 4/2010 59

test for that module.
Proposition 1. Necessary and sufficient con-
dition for a set of tests V to ensure detection
of any error is that for any program module
to be at least one test to test that module.
The following sentence is equivalent with the
sentence 1.
Proposition 2. For any k=1,...,N it exists a
test Vv j  so .1jkv

Definition 4. The matrix),(jkvV 

j=1,…,M , k=1,…,N is called test matrix.
The introducing of the concept of a matrix of
tests is advantageous, in terms of calculus,
for studying the properties of the diagnostic
process.
In these circumstances, propositions 1 and 2
are equivalent to the following sentence:
Proposition 3. Necessary and sufficient con-
dition for a set of tests V to ensure detection
of any error is the test matrix V has no null
columns.
If a set of tests V ensures detection of any er-
ror, we can find then a included matrix of the
tests matrix V so the propositions 1 and 3 are
met with a minimum number of tests.
The included matrix of V is noted V* and is
called reduced matrix.
Further it is recognized that it operates only
in the form of reduced matrix V.

3 Locating Errors
In terms of evolutionary time, the state pro-
gram can be characterized as a random vari-
able t , tT with values in the set of states X.

If the diagnostic problems are solved in suc-
cession, we can use as time set the set of
natural numbers (T=N). It follows that (t), t
T, is a random process that can be treated
as a Markov process with finite set of states.
Definition 5. The locating of the errors is the
experimental process that identifies fault
software modules.
Locating process can be executed simultane-
ously with or after error detection procedure
if there faulting modules exist in program.
In this case we can write:

 t  .\ 0XX
If there are only single errors and tracking
activities are executed sequentially in time,

then usually  0 LX (leaving the original

state in which all program modules are sus-
pected to have errors) and it aims to reach in
 t  1X state, which means locating faulty

module.
The software has, usually, several modules
with errors and more errors for each module.
The hardware is operating in practice with
individual breakdowns, even when there are
multiple faults, because in this case there are
not theoretical results, implemented, similar
to those of single faults.
Therefore, to eliminate multiple faults suc-
cessively apply the methodology of single
faults until the detecting no signals the pres-
ence of faults [3].
By analogy to locate multiple errors in the
software we will proceed in the same manner
developing the theory of individual errors
and implementing, repeatedly, the procedures
established for locating, until all errors are
eliminated.
This procedure can be justified practically by
the fact that the multiple errors (faults) are
not manifested simultaneous necessarily so
for every run of a program they can show as
individual errors
Working assumptions will be described be-
low.
Assumption 1. We consider only single er-
rors.
Testing process starts from initial state  0

LX and continues until  t  )(\ 10 XXX ,

when we locate the module containing errors.
Each state Xxi  has a set of suspected

modules I(xi). For each test Vvi  we have a

set of tested modules)(jvJ . After the test

Vvi  the set of suspected modules is:

a) )()(ji vJxI if the error exists;

b))(\)(ji vJxI if the error not exists.

Assumption 2. The tests Vv j  certainly

give the modules containing errors.
For a test vj to ensure the restriction of suspi-
cious modules it must include at least a sus-
picious modules and no simultaneously all
suspicious modules. In other words, a test vj

60 Informatica Economică vol. 14, no. 4/2010

 V must meet the following condition:

).()()(iji xIvJxI  

We note with)(*
ixV the set of tests vj  V

that have the property stated above and
which defines clearly the relationship:

}.)()()({)(ijiji xIvJxIVvxV   (12)

Definition 6. The set)(*

ixV is called the set

of the useful tests in the state xi.
Its importance is apparent from the following
sentence:
Proposition 4. A set of tests V provides the
location of any errors if

)(ixV ,).(\)(10 XXXxi 

In other words a set of tests provides the lo-
cation of any errors if tests are useful when-
ever there is more than one suspect module.
The following sentence is equivalent to
proposition 4.
Proposition 5. A set of tests V provides the
location of any errors if

.)(,)(2XxxV ii 

In other words, a set of tests provides the lo-
cation of any errors if any pair of suspicious
modules can be detected.
This property is stated in [2] : A set of tests
provides the location of any fault detected if
two faults are two distinctive.
The following sentence expresses the matrix
form of the sentence 5.
Proposition 6. Necessary and sufficient con-
dition for a set of tests V to ensure the loca-
tion of any detected errors is that the test ma-
trix V has no identical columns.

From matrix V we can choose a included ma-
trix V* ensuring proposition 6 with a mini-
mum number of lines. In this way we can en-
sure the location of any errors detected by a
minimum number of checks.
The included matrix V* with this property is
called also reduced matrix, and further we
assume that the reduced form of V is used.

4 Automatic Signalling of the States
In terms of organization of the testing proc-
ess for errors detected in the program we can
distinguish two different cases:
a. The tests run simultaneously. In this
situation we can signal the states of program
that may indicate at any time if the program
is without error or an error is detected in the
program.
b. Tests are executed sequentially (succes-
sively). In this situation the locating process
can be executed sequentially to locate the er-
ror detected. Automatic signalling of the
states is possible where the program is con-
tinually monitored by simultaneous tests in
order to indicate any time if no errors and if
so, what is the perfect module. Its implemen-
tation is done when the assumptions 1 and 2
are satisfied:

Fig. 1. Scheme of automate signalling of the states of a program (hardware variant)

In this case, a test of V is equivalent to meas-
uring a functional parameter j of the system
and comparing it with a certified field 

j
0 ,

j=1,...,M. To use a such information the test-
ing scheme should be structured as fig.1,
where  = (

1
,

2
,...,

M
) is the vector for the

compared parameters and  * =(
1

* ,
2

* ,...,
M

*

) is the vector with the results of this com-
parison, where: :

 Program

 Interface

Schema of
calculus

Display

  * 

Informatica Economică vol. 14, no. 4/2010 61

 j
* =











j

j
o

0
j

j

 if ,0

 if ,1




 (13)

and the calculus scheme realises the corre-
spondence between  * and  signals;  has

the structure: =( 0 , 1 , 2 ,..., N),

where:

 0 =




),...,1, stateany in is program theif ,0

) statein (is errors no has program theif ,1 0

Nix

x

i

 (14)

and

 i =




faultnot is i module the,0

fault is i module theif ,1
 (15)

for i=1,...,N.

Table 1. The logical function of the calculus scheme
Parameters  * 
States  1

* ...  1  N

0 0 ... 0
Unit matrix 1

Transposed matrix V ...
N

The hardware implementation of the scheme
of calculation is done using a combinational
circuit whose function is to distinguish the
fault module(s).
Given that the matrix V provides the detec-
tion and locating of any errors, the trans-
posed matrix V will not have the identical
null or identical lines.
Logic equations for 0, 1,…, N values are
obtained from Karnaugh diagrams and their
minimize (Table 1).
FIAB product contains a section on auto-
matic signalling of the status [2], providing at
output the both reduced matrix V' and table 1
for a tests matrix V.
Figure 2 proposes a software implementation
of the scheme for automatic signalling of the
program states (fig.1), where the following
notations are used:

- NL = number of rows of matrix V , ;
- NC = number of columns of matrix V , ;
- Y * = the vector that keeps, in ascending

order, the number of lines remaining in
reduced matrix V 'of the original matrix
V;

- V’t= transposed matrix of the matrix V’.

5 Locating Errors in Successive Tests
The notion most representative for this case
is the concept of locating program.
Definition 7. Locating program is a se-
quence of tests applied to a program in order
to locate the error detected.
There are two basic classes of software locat-
ing
 fixed programs, when the tests succeed

in a fixed sequence until the error de-
tected is located;

 adaptive programs, when the next test is
determinate by the results of the previous
tests.

Effectiveness of a program that locates the
error detected can be characterized by many
indicators, from which:
 the average number of steps to locate

error;
 the average time for location;
 the average cost of locating process ;
 the average amount of information

brought by the tests.

M
*

0

62 Informatica Economică vol. 14, no. 4/2010

In what it follows we will present the main
concepts related to adaptive locating pro-
grams that use as a criterion of efficiency the
average amount of information brought by
the tests, the key advantage that provides the
most convenient implementation
Whatever is the criterion of efficiency
achieved by the locating program, it is neces-
sary to determine a priori probability of fail-
ure of software modules.
If we note with pi a priori probability of fail-
ure of the module i from system, with Di the

event “module i is fault”, and with D the
event “the program is fault, then we have the
relations:


N

i
iDD

1

 (16)

and),/(DDPp ii  (17)

resulting
).(/)(DPDPp ii  (18)

Probabilities pi can be determined either ex-
perimentally or analytical.

Fig. 2. Scheme of automate signalling of the states of a program (software variant)

a) Experimentally determining of the pi values

Informatica Economică vol. 14, no. 4/2010 63

After we analyze N cases when the program
was fault, we determine the number of cases
Mi when the module i was fault. We can say,
under the law of large numbers, that iM /N

converges in probability to ip and therefore

we can approximate ip even with this frac-

tion

ip NM i / . (19)

Obviously the following properties are satis-
fied (assuming single fault):
1) ip ;,...,1,0 Ni  (20)

2)


N

i
ip

1

=1. (21)

b) Analytical determining of the pi values
Assuming that the failure of the program
modules follows a exponential distribution
law of life time, i.e. it complies with the
model Jelinski-Moranda (it supposes that are
N1 errors in program at the beginning, each
independent of each other and equally likely
to cause a failure during testing; the number
N1 of error is estimated by maximum likeli-
hood method; the errors are not removed un-
til a fatal error appears, when the accumu-
lated errors group is extirpated and no new
ones are introduced during debugging), we
have:

t
i

ieDP 1)(ti (22)

if the condition t<<1 is realized , and for the
entire program:

,1)(teDP t    (23)
where 

i

 is the intensity of failure of the

module i, and  is the intensity of failure of
the program:





N

i
i

1

 (24)

For the mission duration t, so that it<<1 and
t<<1, we can approximate by virtue of rela-
tions (22) and (23) a priori probability with
the relationship:

 /iip  (25)

Values pi thus obtained also satisfy condi-
tions 1) and 2) of case a).
Failure intensities calculation of the modules
will be made to the formula proposed in [3]:

kkk IMer /**   (26)

where:
Me=4,2*10 7 is the Musa exposure rate of
faults;
r = r processor speed, in instructions / s - can
be determined from benchmarking programs
or technical characteristics of the computer
offered for sale;
k = number of faults contained by module
k. He is determined transforming source in-
structions written in a programming language
into functional points and then determining
the number of faults as CMM Level (Capa-
bility Maturity Model) selected [4];
Ik = number of lines of executable code k *
expansion rate[4].
Random nature of a locating program is
given by the results of the tests.
Definition 8. The result of a test is a infor-
mation that confirms/not confirms the sus-
ceptibility about the tested modules.
The result of the testing we note rij(k) and it
represents the result of test j in the state xi ,
when the module k is fault. Therefore it is a
binary random variable, defined by:












)lity susceptibi theconfirmesnot (it)(\)(if ,0

)lity susceptibi theconfirmes(it)()(if ,1
)(

ji

ji

ij
vJxIk

vJxIk
kr



(27)

So ijr (k) is a discreet random variable having

the next repartition table:

 (28)

where:
 (29)

 (30)

which we’ll have the relations:

, (31)

0 1
(.) : ,ij

ij ij

r
Q P

 
 
 

(1),ij ijP P r 

(0),ij ijQ P r 

() ()

()

i j

i

k
k I x J v

ij
k

k I x

p

P
p

 








64 Informatica Economică vol. 14, no. 4/2010

. (32)

We’ll have, obviously:

. (33)

We’ll note the information obtained from

state, when the susceptibility is confirmed

(respectively) and with the informa-

tion obtained from state , when the suscep-

tibility is not confirmed (respective rij = 0).
We note H() the entropy of the state ,

and H(), respectively H(), the entropy

of the state after the test j, with confir-

mation/not confirmation of the susceptibility.
We note the fault probability of mod-

ule k, when it belongs to the set I() and

we’ll have:

 (34)

In these situations we will have the entropies:

 (35)

 (36)

 (37)

We’ll note the entropy after testing. is

a discreet random variable with the next re-
partition table:

. (38)

The average entropy after testing will be the
average value of , noted with :

. (39)

The average information brought by test

in the state , noted with I(/), will be:

I(/)=H()- . (40)

To determine these values we’ll first rewrite
the values for and which, ac-

cording to (33), are:

 (41)

respectively

, (42)

where:

 (43)

 (44)

and we used relations (32) and (34).
We’ll calculate H() and H():

(45)

We’ll also have:

()\ ()

()

i j

i

k
k I x J v

ij
k

k I x

p

Q
p










1ij ijQ P 
1
ix

ix

1ijr  0
ix

ix

ix ix
1
ix 0

ix

ix

ijH

ix ix

ix ix

1()k ip x 0()k ip x

1
ix 0

ix

Informatica Economică vol. 14, no. 4/2010 65

 (46)

Replacing in (38) the values above obtained,
we’ll have:

 (47)

resulting:

 (48)

That is to say, in natural language, that [2]:
Theorem 1. The average information
brought by a test is equal with the entropy of
the testing result.
Immediate conclusion is that at each step of
testing it should be chosen that test which
maximizes the average amount of informa-
tion given by (47).
Maximum value I (j/xi) is obtained for that
test which has the value of Pij the closest of
0.5. Choosing the test in the step i will be
subject to the results obtained in previous
steps.
The locating program of the detected error in
software can be represented by a tree graph
=(V,R) whose nodes are the running tests
and arcs represent the results.
Origin of the graph is the test running first
time, and each peak of the graph represents
the fault module of the program.
For a locating program, as mentioned above,
the tests may be succeed in a fixed sequence
or in an order determined by the test result at
each step.
Figure 3 shows the principle of construction
of the graph for the locating of the error de-
tected when the locating process is optimized
by the criterion of average quantity of infor-
mation brought by tests.
The locating algorithm is given below:
Step 1. For each test , from the set of help-

ful tests V*(), is calculated the value

then the calculated values will be included in
the last column of the table.
Step 2. Determine the index value j * for

which the value Pij of the last column is the
closest to 0.5 and run the test j* ; after the
test execution two situations occur: or not
confirm susceptibility (r = 0 or r = 1) .
Step 3. If, after the testing, the fault module
is among suspected modules (confirmation)
we’ll build a new table that will contain on
rows the checks that belong to V*() and

the original columns will keep only the col-
umns that belong to I() (the modules

which were suspected to be fault were tested
and suspicion was confirmed).
Step 4. If, after the testing, the fault module
is not among suspected modules (not con-
firmation) we’ll build a new table that will
contain on rows the checks that belong to
V*(xi

0) and the original columns will keep
only the columns that belong to I(xi

0) (the
modules which were suspected to be fault
were tested and suspicion was not con-
firmed).
Continue actions from step 1 to 4 until the
fault module is localized. Presented algo-
rithm is implemented in FIAB utility [2].
The locating time of an error detected in a
program is a discrete random variable which
we note, as [1], with , having the follow-

ing distribution table:

, (49)

where is the locating time of a error ex-

isting in module i. This value can be calcu-
lated using the locating graph for detected er-
ror. In this case, in the graph is a single
subgraf i that starts from root to i repre-
senting the sequence of tests until the loca-
tion of the error detected i. We make the fol-
lowing notations:

 (50)

(/) log log .j i ij ij ij ijI v x P P Q Q    

1
ix

1
ix

restT

1 2

1 2

: N
rest

N

T
p p p

   
 
 





i




{ / }i j iJ j v 

66 Informatica Economică vol. 14, no. 4/2010

V*() ix

 i
j

1 ijP

1

J*

I() ix

.

r =0

 0()iI x

r =1

 1()iI x

So is the set of indices of the tests in-

cluded on the branch . If is the time of

test j, we will have:

 (51)

In these circumstances, the distribution of the
locating time is completely determinate.
We note, according to the standard [1], with
Trest.med the average time for the locating
of the error detected, respectively Trest.med =
M[Trest].
Then:

 (52)

and respectively

 (53)

Observation 1. If in the formula (51) Tj is
replaced with 1, the value Trest.med thus ob-
tained will represent the average number of
steps required for the locating of the error
detected.

 i
j

1

1

J*

 i
j

1

1

J*

Fig. 3. Building of the graph for the locating of the detected error optimized by the criterion
of average quantity of information brought by tests

6 Conclusions
The locating program built contains all
methodological information needed to exe-
cute the locating process. It must then com-
plete with details of the tests contained in it:
what parameters are tested, and which are
normal specifications (i.e. specifying the cri-
terion of failure).
We emphasize once again the generality of

this methodology, the application of which is
subject only to the existence of specific in-
formation on program structure, the a priori
probability of failure of modules and to the
set of tests available for the diagnosis of the
program

References
[1] STPM 040066-91, STPM 040070-91,

iJ

i jT

.
i

i j
j J

T


  

.
1

N

rest med i i
i

T p


 

.
1

.
i

N

rest med i j
i j J

T p T
 

  

ijP

ijP

The nearest 0.5
value

The nearest
0.5 value

The nearest 0.5
value

V*(xi

1)

V*(xi

0)

Informatica Economică vol. 14, no. 4/2010 67

Standarde Profesionale Militare, Apara-
tură, instrumente, dispozitive şi echi-
pamente cu destinaţie militară.

[2] A. Ghiţă, V. Ionescu and M. Bică, Me-
tode de calcul în mentenabilitate, Editura
A.T.M., 2000.

[3] M. Popescu, Managementul fiabilităţii
aplicaţiilor software, Teză de doctorat,
A.T.M., Bucureşti, 2002.

[4] System and Software Reliability Assur-
ance Notebook, Produced for Rome Labo-
ratory, New York, 2007.

Mihai POPESCU has graduated the Faculty of Electronics and Electrical
from Military Technical Academy, Bucharest, in 1983; he holds a PhD di-
ploma in Computer Science from 2002 and he had gone through two didactic
positions since 1998 when he joined the staff of the Bucharest Military
Technical Academy- lecturer in 1998 and assistant professor in 2002. Cur-
rently he is assistant professor of Titu Maiorescu University, Bucharest, at
Faculty of Informatics. He is the author of more than 6 books and over 55

journal articles in the field of software reliability, software metrics and data bases.

